Abingdon Primary School

Calculation Policy 2014

About our Calculation Policy

This policy shows how calculations are taught throughout Abingdon Primary School and has been produced to meet the statutory requirements of the National Curriculum 2014. It is designed to provide children with a clear progression though the calculation strategies.

Early learning of number and calculation in Foundation Stage follows the "Development Matters" EYFS document and this calculation policy is devised to follow on progressively from the content and methods established in the Early Years Foundation Stage.

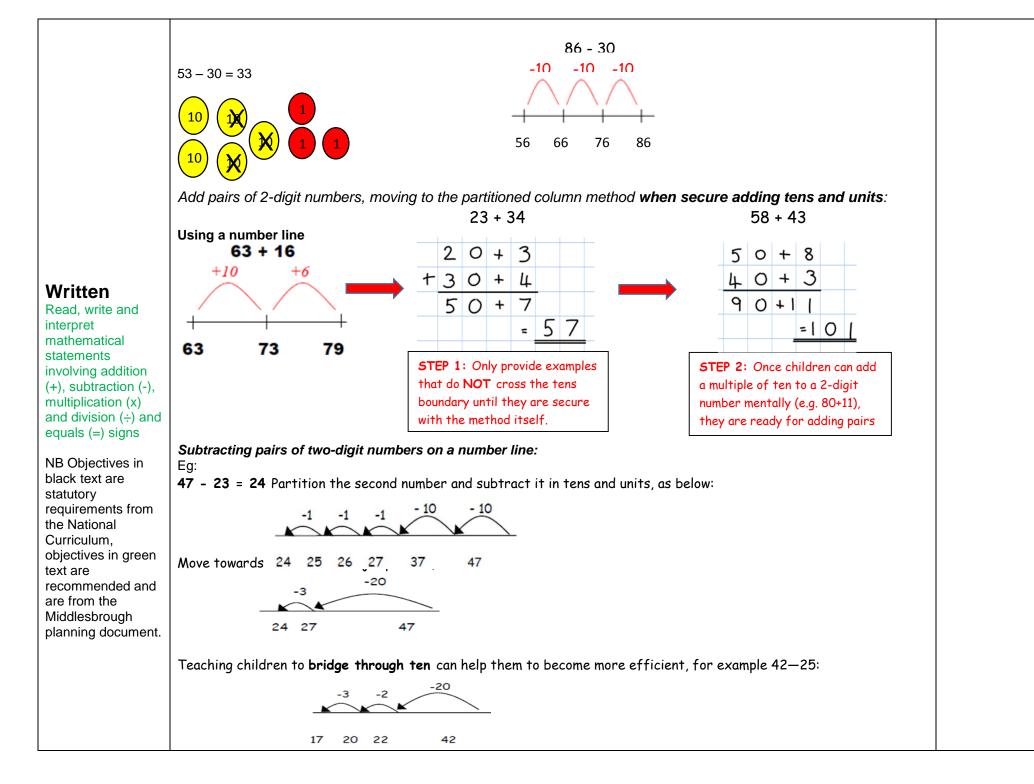
As there is a greater emphasis on written methods and also the fact that they are introduced at an earlier age, it is vital that children are taught conceptual understanding through a wide range of resources in order to gain deeper understanding and fluency.

Year Group Expectations

The policy is organised into year groups and is based on expectation for that year group. However, it must be taken into account that some children will take longer to understand and that previous methods should first of all be consolidated, embedded and then once secure, should a child move on. Once a child is secure with a method, they should not quickly move onto the next stage but should be given plenty of opportunities to practise the methods, providing them with many examples of problem solving and reasoning in order to deepen their understanding and master methods.

Choosing a Calculation Method

In order to choose the most efficient method for the numbers in the calculation, children will be taught to and encouraged to go through the following process before carrying out a calculation:

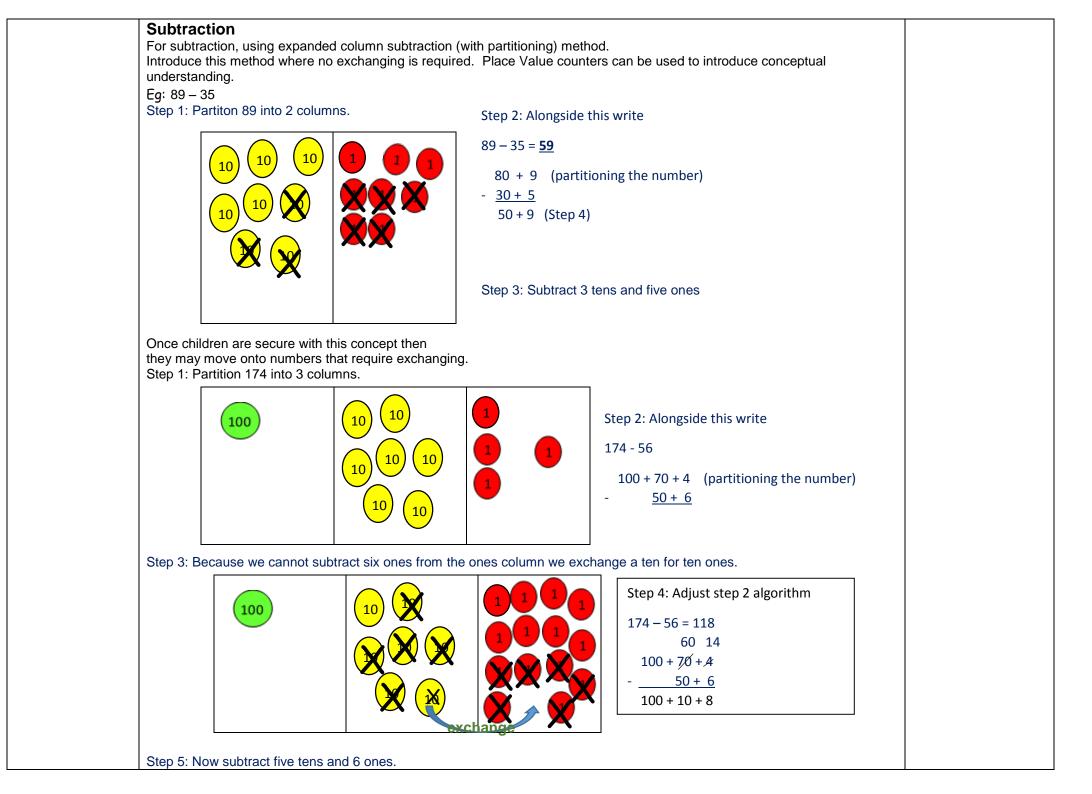

Key Vocabulary: add, more, plus, and, make, altogether, total, equal to, equals, double, most, count on, number line, equal to, take, take away, less, minus, subtract, leaves, distance between, how many more, how many fewer / less than, most, least, count back, how many left, how much less is ?

Recall/	Representations	Problem
mental		Solving
Represent and use number bonds and related subtraction facts within 20	All number bonds need to be taught, not just those to 10 or 20. Physical objects (counters, cubes, etc) can be used to put into groups, finding all different possibilities for each number, writing the number sentences alongside. Eg: Making 5 1 + 4 = 5, 2 + 3 = 5, 4 + 1 = 5, 3 + 2 = 5 The same can be done for subtraction facts.	Solve one-step problems that involve addition and subtraction, using concrete objects and pictorial representations,
Add and subtract one-digit and two- digit numbers to 20, including zero	Use of fingers (number bonds to 10) and bead strings For addition and subtraction use manipulatives, such as: bead strings, cubes or counters, so that their experiences are concrete. Alongside these encourage them to write the appropriate number sentences.	and missing number problems such as $7 = \Box - 9$
Written Read, write and interpret	Video Clip: <u>https://www.youtube.com/watch?v=OkW1Y11tGxw&list=UUVb98bWNgEmk02R7enUrmFA</u>	
mathematical statements nvolving addition (+), subtraction (-) and equals (=)	When children are ready to move away from manipulatives: Use numbered number lines to add, by counting on in ones. Encourage children to start with the larger number and count on. Eg	
signs	$6+3=9 \underbrace{+1}_{0 \ 1 \ 2 \ 3 \ 4 \ 5 \ 6 \ 7 \ 8 \ 9 \ 10}$ Count back in ones on a numbered number line to take away, with numbers up to 20:	
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
	$7 - 4 = 3$ $\sqrt[3]{7}$ It is really important that the children understand the equals sign as a sign of equivalence, that what is on one side of it has the same value as what is on the other. Record number sentences in different orders, such as $5 + 5 = 10$ and $10 = 5 + 5$	

Key Vocabulary:

add, more, plus, and, make, altogether, total, equal to, equals, double, most, count on, number line, take, take away, less, minus, subtract, leaves, distance between, how many more, how many fewer / less than, least, count back , how many left, how much less is_? difference, count on, strategy, sum, tens, units, ones, partition, addition, column, tens boundary

Objectives	Representations	Problem Solving
Recall/ Mental Recall and use addition and subtraction facts to 20 fluently, and derive and use related facts up to 100 Add and subtract numbers using concrete objects, pictorial representations, and mentally, including: * a two-digit number and ones * a two-digit number and tens * two two-digit numbers adding three one- digit numbers Show that addition of two numbers can be done in any order (commutative) and subtraction of one number from another cannot	Continue to use concrete objects for number bonds until children are fluent. Video: https://www.youtube.com/watch?v=mEHKmMapWGY Children use numbered lines to support their own calculations using a numbered line to count on and back in ones. Eg 13 + 5 = 18 12 - 3 = 9 +1+1+1+1+1 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 For adding and subtracting tens to and from a two-digit number, use pictoral and concrete objects such as: number lines, Numicon, Diennes and place value counters to represent tens and ones (units). Children should gain an understanding that the ones digit does not change but the tens digit does. (Children should be secure in counting in tens) Eg: Using place value counters Using number line 45 + 20 = 65 10 10 10 10 10 10 10 10 10 10	Solve problems with addition and subtraction: * using concrete objects and pictorial representations, including those involving numbers, quantities and measures applying their increasing knowledge of mental and written methods Solve simple problems in a practical context involving addition and subtraction of money of the same unit, including giving change (copied from Measurement)



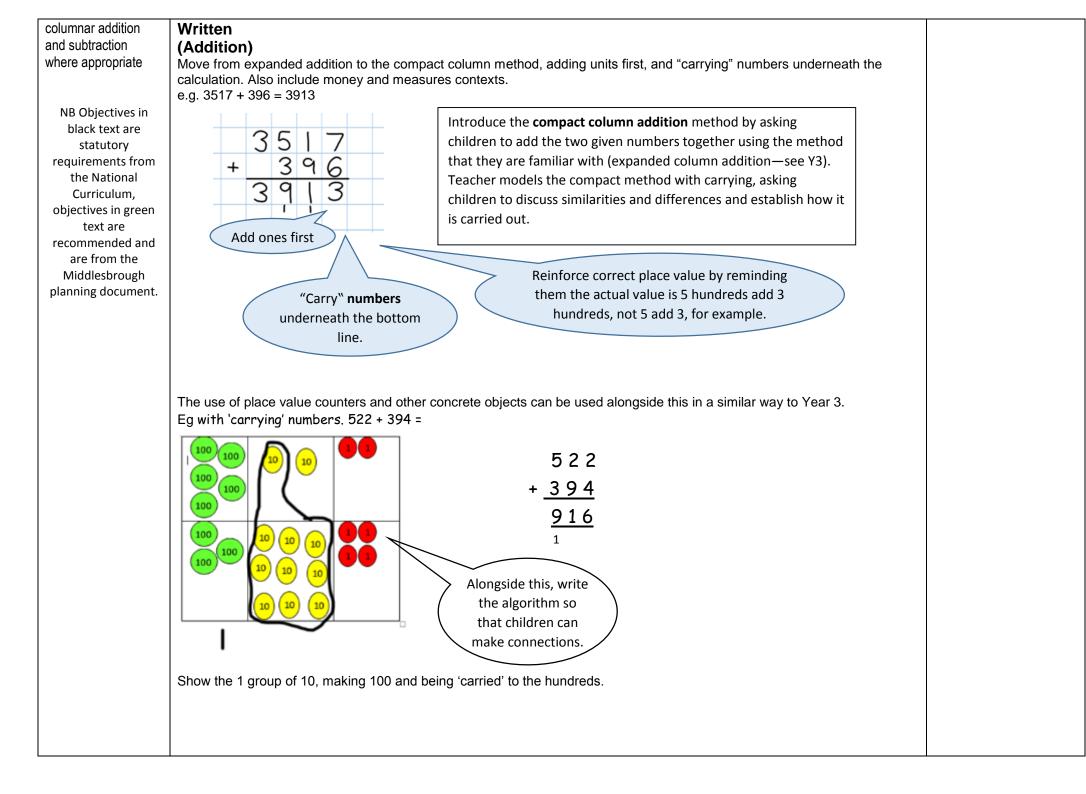
	strategy - subtract numbers close together by counting on: Many mental strategies are taught. Children are taught se that when numbers are close together, it is more efficient to count on the difference. They need to be clear about the relationship between addition and subtraction.	
37 38 It is really	1 +1 +1 +1 39 +40 +1 +2 y important that the children understand the equals sign as a sign of equivalence, that what is on one side of it has the lue as what is on the other. Record number sentences in different orders, such as 23 + 8 = 31 and 31 = 23 + 8	

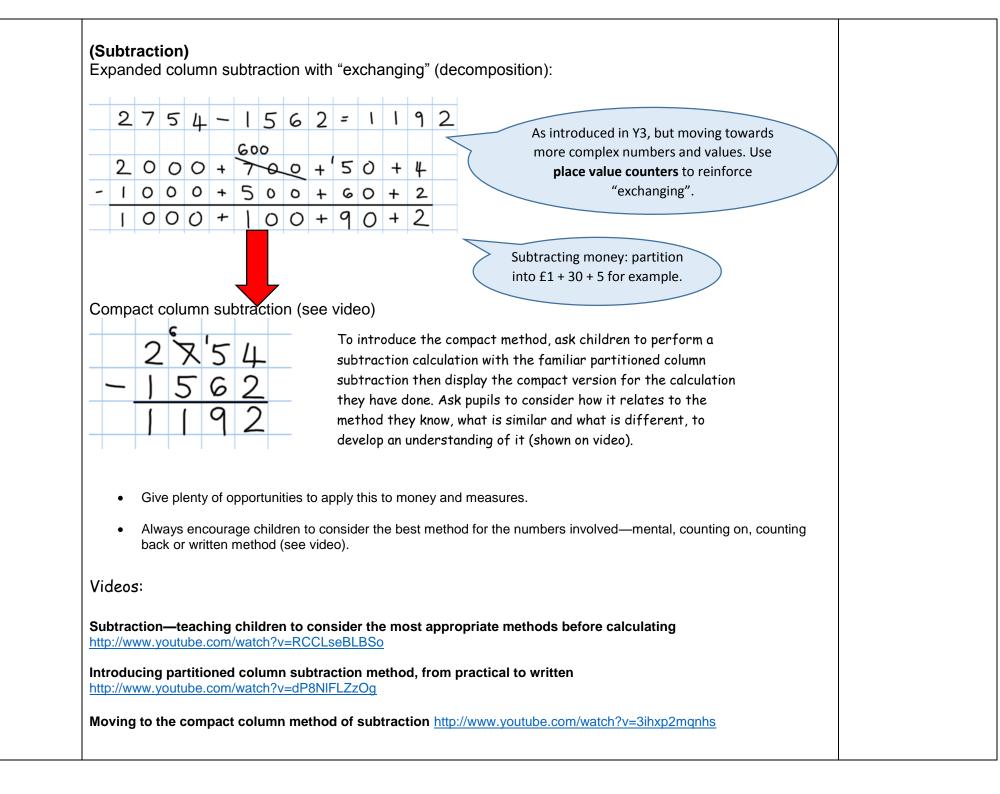
Key Vocabulary: add, more, plus, and, make, altogether, total, equal to, equals, double, most, count on, number line, sum, tens, units(ones) partition, plus, addition, column, tens boundary, take, take away, less, minus, subtract, leaves, distance between, how many more, how many fewer / less than, most, least, count back, how many left, how much less is_? difference, strategy, exchange, decrease, hundreds, value, digit, hundreds boundary, increase, vertical, 'carry', expanded, compact

Objectives	Representations	Problem Solving
Recall/ mental Recall and use addition and subtraction facts to 100 fluently, and derive and use related facts up to 1000	Use of the empty number line can be introduced to support mental calculations. Addition – Starting with the larger number to 'count-on': Eg I have 36p and my mum gives me 28p pocket money. How much money do I have altogether? N.B Only one number is partitioned here M.B Only one number is partitioned here	Solve problems, including missing number problems, using number facts, place value, and more complex addition and subtraction
Add and subtract numbers mentally, including: * a three-digit number and ones * a three-digit number and tens * a three-digit number and	Two examples of $48 + 36$ +30 +2 +30 +2 +4 48 78 80 84 +2 +34 48 50 84	
hundreds Use their knowledge of the order of operations to carry out calculations involving the four operations	Subtraction - 74 - 27 = 47 worked by counting back: -3 - 4 - 20203 - 42034203420342034202034202034202034202034202034202034202	
	For addition, partitioning can be used as a mental method. Add the hundreds then the tens and finally the ones to form partial sums and then add these partial sums. It is not advised to use this method for subtraction as sometimes 'exchanging' is needed and this should be left for written methods.	

Written Add and subtract numbers with up to three digits, using formal written methods of columnar addition and subtraction	Example of addition: 124 + 276 100 + 200 = 300 20 + 70 = 90 4 + 6 = 10 Which is then recorded in a shorter form below 124 + 276 = 300 + 90 + 10 = 400 Written (addition) Introduce the expanded column addition method, using place value counters or Diennes as concepts. Eg: using paper folded into 3 columns or whiteboard with 3 columns, representing HTU
NB Objectives in black text are statutory requirements from the National Curriculum, objectives in green text are recommended and are from the Middlesbrough planning document.	236 + 73 (Partition numbers and put correct number in each column) + 100 10 10 1 1 1 100 (counting in ones/units) 100 (counting in hundreds) 309
	236 Most children will move away from a conceptual understanding to carrying out method without counters. In order to carry out this method of addition: 9 Children need to recognise the value of the hundreds, tens and units without recording the partitioning. 1000 Pupils need to be able to add in columns.

Once pupils are secure with the understanding of "exchanging", they can use the partitioned column method to subtract any 2 and 3-digit numbers. Most children will move away from using place value counters and concrete objects into using the algorithm only.


	2	3	8	-	۱	4	6	=	9	2
	. 1	0	0							
	2	6	° Q	+ '	З	0	+	8		
-	I	0	0	+	4	0	+	6		
			0	+	٩	0	+	2		

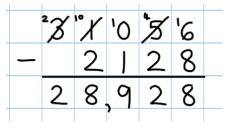

Videos: Subtraction—teaching children to consider the most appropriate methods before calculating http://www.youtube.com/watch?v=RCCLseBLBSo

Introducing partitioned column subtraction method, from practical to written http://www.youtube.com/watch?v=dP8NIFLZzOg

Key Vocabulary: add, more, plus, and, make, altogether, total, equal to, equals, double, most, count on, number line, sum, tens, units (ones), partition, plus, addition, column, tens boundary, hundreds boundary, increase, vertical, "carry", expanded, compact, take, take away, less, minus, subtract, leaves, distance between, how many more, how many fewer / less than, least, count back, how many left, how much less is_? difference, count on, strategy, exchange, decrease, hundreds, value, digit, inverse thousands, hundreds, digits, inverse

Objectives	Representations	Problem Solving	
Recall/ Mental Recall and use addition and subtraction facts to 1000 fluently, and derive and use related facts up to 10000 Add and subtract numbers mentally, including: * a three-digit number and ones * a three-digit number and tens * a three-digit number and tens * a three-digit number and tens * a three-digit number and tens * build the order of operations to carry out calculations involving the four operations Written Add and subtract numbers with up to 4 digits using the formal written methods of	Continue to build on mental methods taught in Year 3. Children should be encouraged to decide whether a mental method or a written method would be most efficient for the calculation. Counting on as a mental strategy for subtraction: Continue to reinforce counting on as a strategy for close-together numbers (e.g. 121–118), and also for numbers that are "nearly" multiples of 10, 100, 1000 or £s, which make it easier to count on (e.g. 102-89, 131–79, or calculating change from £1 etc.). • Start at the smaller number and count on in tens first, then count on in units to find the rest of the difference: +10 +11 +1	Solve addition and subtraction two-step problems in contexts, deciding which operations and methods to use and why	

Key Vocabulary: add, more, plus, and, make, altogether, total, equal to, equals, double, most, count on, number line, sum, tens, units (ones), partition, plus, addition, column, tens boundary, hundreds boundary, increase, "carry", expanded, compact, vertical, thousands, hundreds, digits, inverse, take, take away, less, minus, subtract, leaves, distance between, how many more, how many fewer / less than, most, least, count back, how many left, how much less is_? difference, count on, strategy, exchange, decrease, hundreds, value, digit, inverse, tenths, hundredths, thousandths, decimal point, decimal places


Objectives	bjectives Representations				
Recall/ Mental Recall and use addition and subtraction facts to 1000 fluently, and derive and use related facts up to 100000 Add and subtract numbers mentally with increasingly large numbers Use their knowledge of the order of operations to carry out calculations involving the four operations Written Add and subtract whole numbers with more than 4 digits, including using formal written methods (columnar	Children will become increasingly confident in deciding on most efficient method for the calculation depending on the numbers involved. Mental methods previously taught in Years 3 and 4 will be reinforced and the use of the empty number line should be encouraged when dealing with problems involving time and negative numbers. The use of the empty number line can also be useful for money word problems. Eg: A film starts at 10:15 and lasts for 2 hours and 17 minutes. What time does the film end? Step 1: Write the start time at the left hand side of the empty number line Step 2: Add on 2 hours and 17 minutes by partitioning the minutes into 'easy' chunks. In this is the time that the film ends. The temperature in London is 9°C. The temperature in Moscow is -7°C. What is the difference in temperature? Step 1: When finding 'difference' we put both values onto the empty number line, always with the smaller value to the left. In this case -7°C and be the left. In this case -7°C and be the left. In this case -7°C and be the added. Step 2: Count on amounts that make it easy to bridge through numbers, in this case it is easy to bridge through numbers, in this case the left. The lef	Solve addition and subtraction multi-step problems in contexts, deciding which operations and methods to use and why			

addition and subtraction)	Written (Addition)	
	Add numbers with more than 4 digits including money, measures and decimals with different numbers of decimal places.	
NB Objectives in black text are statutory requirements from the National Curriculum, objectives in green text are		
recommended and are from the Middlesbrough planning document.	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
	1 9 0 1 3 6 5 + 0 7 0 2 3 3 6 1 1 1 1 Say "6 tenths add 7 tenths" to reinforce place value. Tenths" to reinforce place value.	

Subtraction

(including money, measures, decimals.)

Compact column subtraction (with "exchanging").

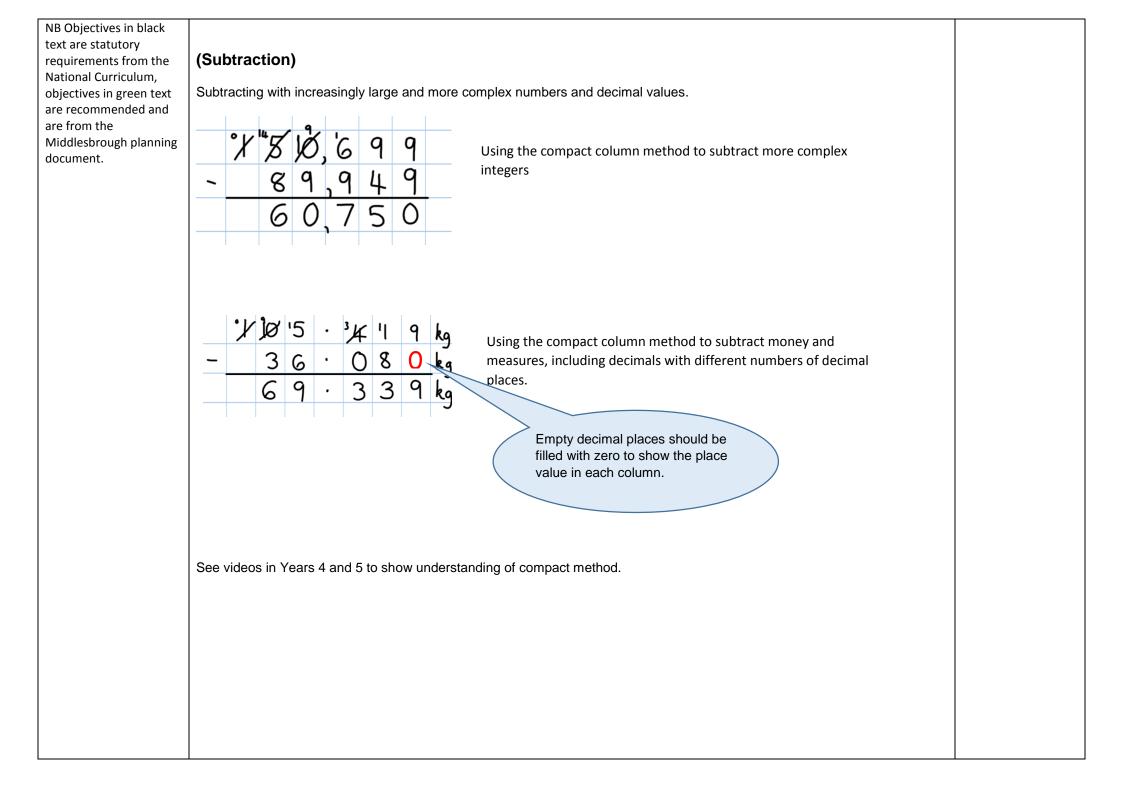
6

0

5

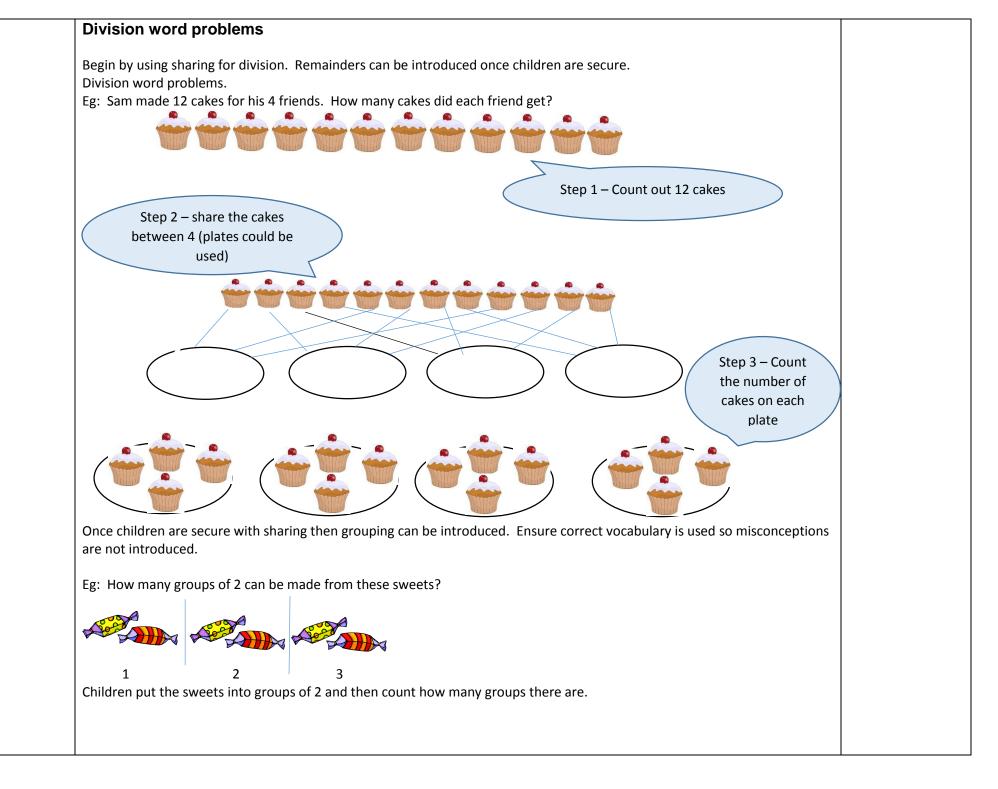
Children who are still not secure with number facts and place value will need to remain on the partitioned column method until ready for the compact method. Place value counters can be used alongside this (see Year 4).

Subtracting with larger integers.

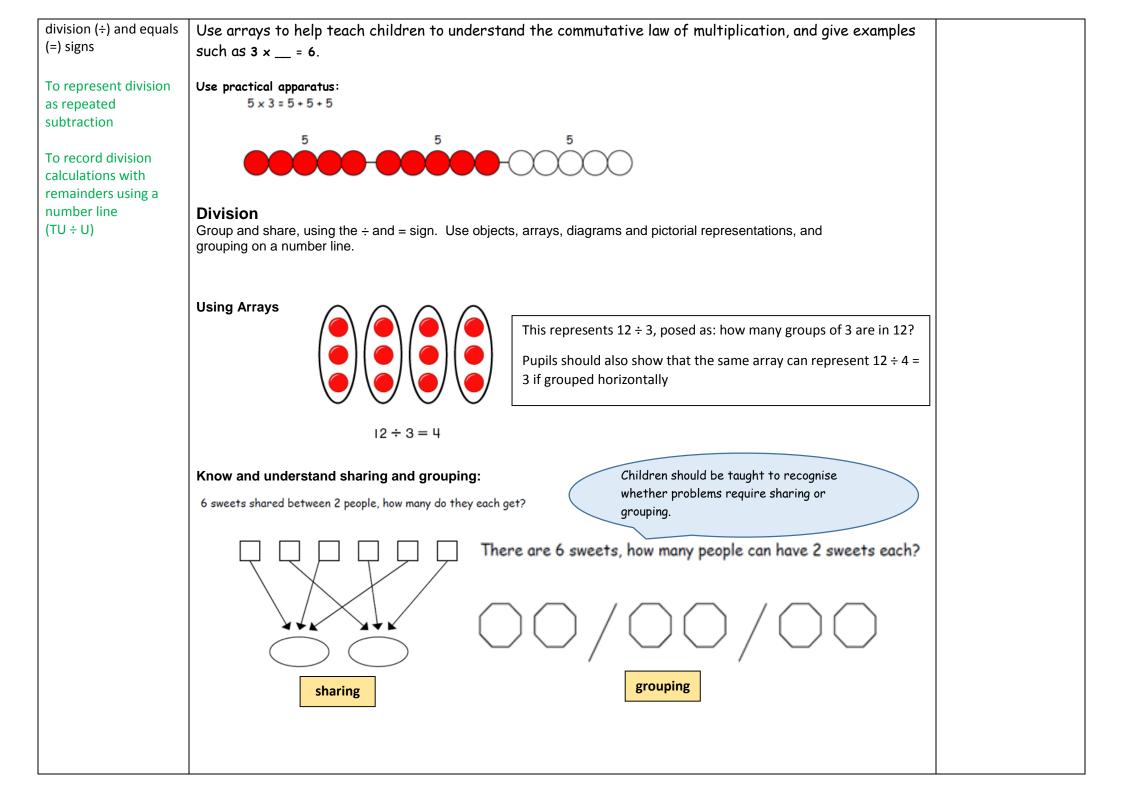

Subtract with decimal values, including mixtures of integers and decimals, aligning the decimal point.

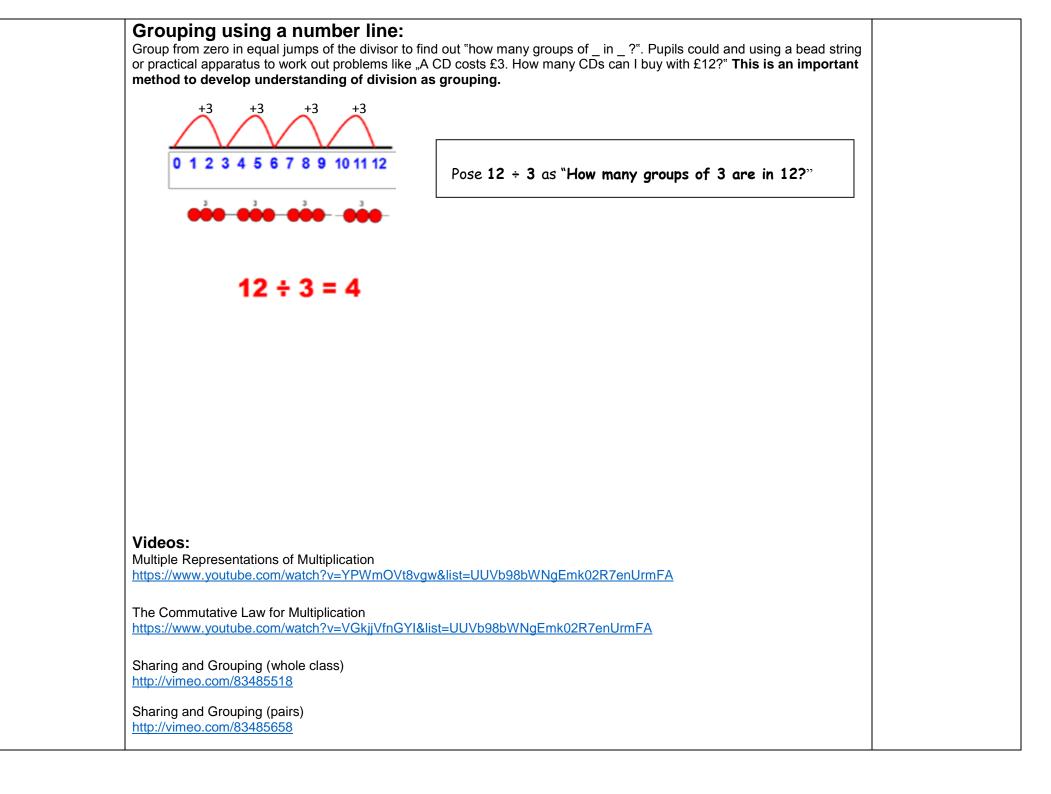
Add a "zero" in any empty decimal places to aid understanding of what to subtract in that column.

Video: Moving to the compact column method of subtraction http://www.youtube.com/watch?v=3ihxp2mgnhs

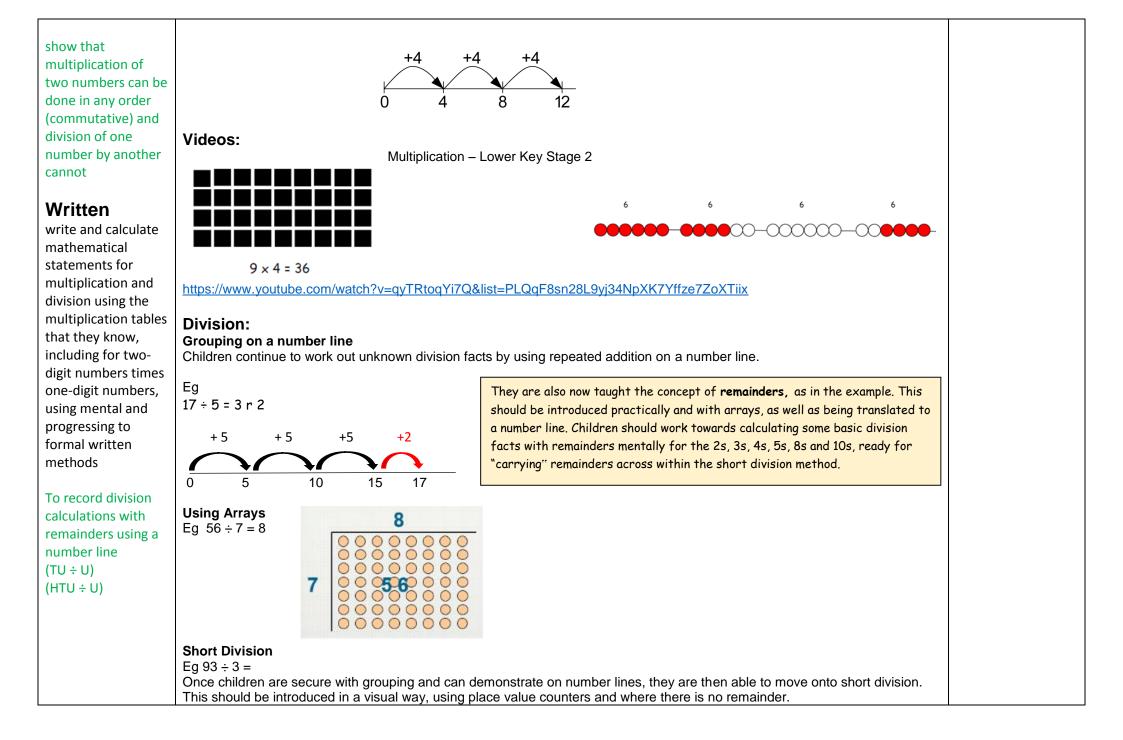

Key Vocabulary: add, more, plus, and, make, altogether, total, equal to, equals, double, most, count on, number line, sum, tens, units (ones), partition, plus, addition, column, tens boundary, hundreds boundary, increase, "carry", expanded, compact, vertical, thousands, hundreds, digits, inverse, decimal places, decimal point, tenths, hundredths, thousandths, take, take away, less, minus, subtract, leaves, distance between, how many more, how many fewer / less than, most, least, count back, how many left, how much less is_? difference, count on, strategy, exchange, decrease, value

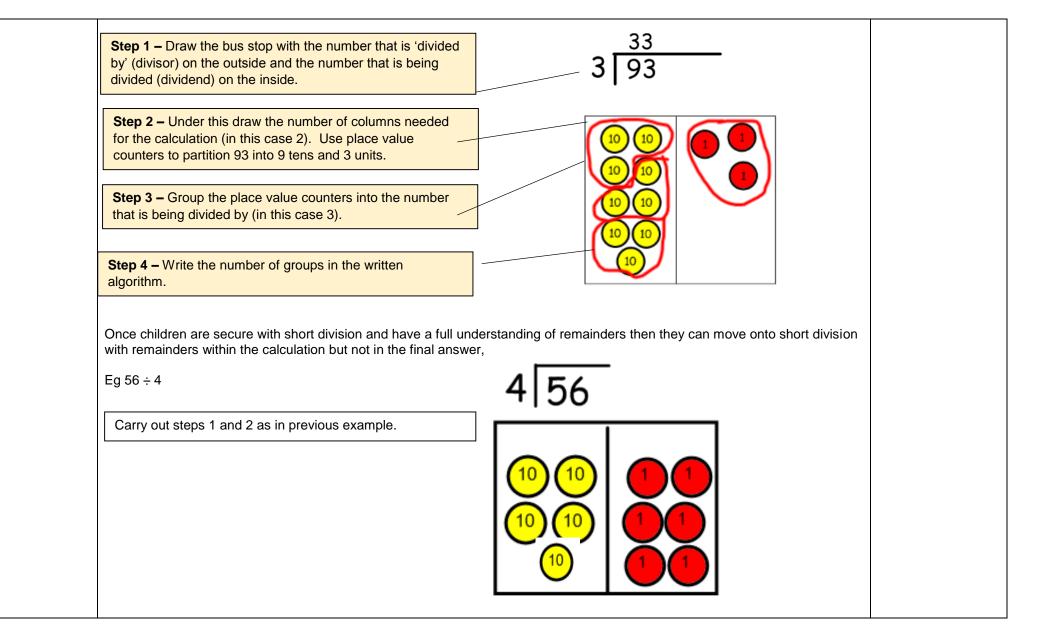
Objectives	Representations					Representations Prob Solv			
Recall/ Mental Recall and use addition and subtraction facts to 1000 fluently, and derive and use related facts up to 1000000 Perform mental calculations, including with mixed operations and large numbers Use their knowledge of the order of operations to carry out calculations involving the four operations Written Add and subtract whole numbers with more than 4 digits, including using formal written methods (columnar addition and subtraction)	Children should be given the opportunity to rehearse a range of mental calculations and they should do this with confidence and fluency. The quickly decide on the most efficient method for the numbers involved. Reinforce the use of the empty number line for calculations involving time, negative numbers and some money word problems. Children should be encouraged to use a checking strategy (Eg: calculating using a different method or using the inverse). Written (Addition) Add several numbers of increasing complexity Adding several numbers with different numbers of decimal places (including money and measures): • Tenths, hundredths and thousandths should be correctly aligned, with the decimal point lined up vertically including in the answer row. • 9 3 • 5 1 1 • 1 2 0, 5 5 1 • 2 0, 5 5 1 • 2 0, 5 7 9	solve addition and subtraction multi- step problems in contexts, deciding which operations and methods to use and why Solve problems involving addition, subtraction, multiplication and division							

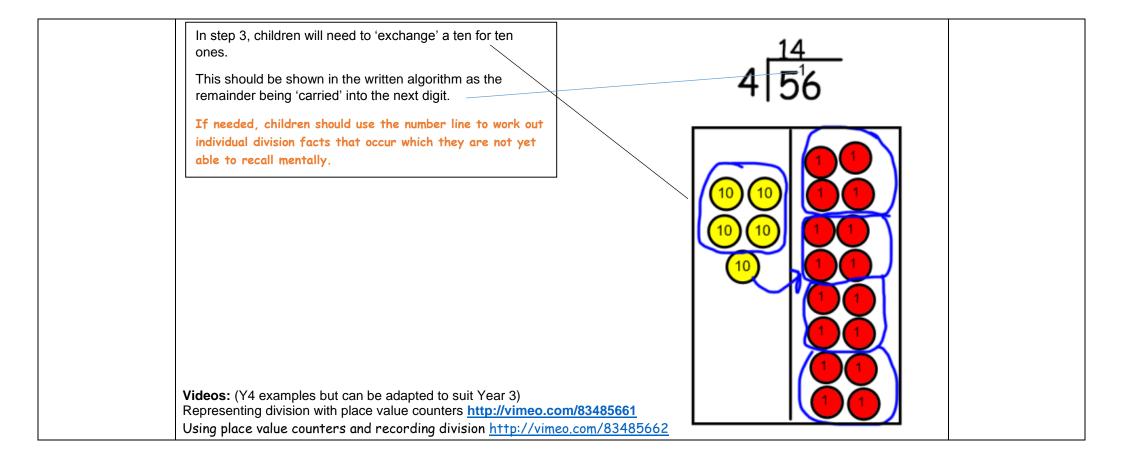

Key Vocabulary: groups of, lots of, times, array, altogether, multiply, count, share, share equally, one each, two each..., group, groups of, lots of


Objectives	Representations	Problem Solving
Recall/ Mental Count in multiples of twos, fives and tens (From Number and Place Value)	Use concrete objects, pictorial representations and arrays. Multiplication word problems Eg: How many fingers do 2 boys have altogether? 5 10 15 20 There are 2 sweets in each bag. How many sweets are there altogether?	Solve one-step problems involving multiplication and division, by calculating the answer using concrete objects, pictorial representations and arrays with the support of the teacher.
	Concrete objects could be put into arrays to enable children to make further connections. Eg $2 \times 4 = 8$	

Key Vocabulary: groups of, lots of, times, array, altogether, multiply, count, share, share equally, one each, two each..., group, equal groups of, multiplied by, repeated addition, column, row, commutative, sets of, equal groups, times as big as, once, twice, three times... divide, divided by, divided into, division, grouping, number line, left, left over


Objectives	Representations	Problem Solving
Recall/ Mental count in steps of 2, 3, and 5 from 0, and in tens from any number, forward or backward (from Number and Place Value)	 Children should begin to recall multiplication facts for 2, 5 and 10 times tables through practice in counting and understanding of the operation. Multiply using arrays and repeated addition (using at least 2s, 5s and 10s) Eg: 3 times 5 is 5+5+5=15 or 3 lots of 5 or 5 x 3 Repeated addition can be shown easily on a number line. 	solve problems involving multiplication and division, using materials, arrays, repeated addition, mental methods, and multiplication and
recall and use multiplication and division facts for the 2, 5 and 10 multiplication tables, including recognising odd and even numbers show that multiplication of two numbers can be done in any order (commutative) and division of one number by another cannot Written Calculate mathematical statements for multiplication and division within the multiplication tables and write them using the multiplication (×),	5 x 3 = 5 + 5 + 5 5 5 5 5 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 If I have 6 bicycles how many wheels would there be? 2 + 2 + 2 + 2 + 2 + 2 + 2 = 12 wheels. $6 \times 2 = 12$ Arrays Eg: $5 \times 3 = 3 + 3 + 3 + 3 = 15$ $3 \times 5 = 5 + 5 + 5 = 15$ $5 \times 3 = 3 + 3 + 3 = 15$	division facts, including problems in contexts





Key Vocabulary: groups of, lots of, times, array, altogether, multiply, count, multiplied by, repeated addition, column, row, commutative, sets of, equal groups, times, _times as big as, once, twice, three times..., share, share equally, one each, two each..., group, equal groups of, divide, divided by, divided into, division, grouping, number line, left, left over, partition, grid method, multiple, product, tens, units, value, inverse, short division, 'carry', remainder, multiple

Objectives	Representations	Problem Solving	
Recall/ Mental count from 0 in multiples of 4, 8, 50 and 100 (copied from Number and Place Value)	Introduce the grid method for multiplication of TU x U. Eg 14 x 6 X 10 4 6 60 24 To begin with, children should be encouraged to link a multiplication calculation to an array. This knowledge will support with the development of the grid method.	solve problems, including missing number problems, involving multiplication and division, including positive integer scaling problems	
recall and use multiplication and division facts for the 3, 4 and 8 multiplication tables write and calculate mathematical statements for multiplication and division using the multiplication tables that they know, including for two- digit numbers times one-digit numbers, using mental and progressing to formal written methods (appears also in Written Methods)	Introduce the grid method with children physically making an array to represent the calculation (e.g. make 6 lots of 14 with 10s and 1s place value counters), then translate this to grid method format (see video clip).	and correspondence problems in which n objects are connected to m objects	
	Children will need to be secure with partitioning to be able to carry this out successfully. They will need to be able to multiply multiples of 10 by a single digit (eg 30 x 3). For multiplication facts not known they should use repeated addition or other taught mental strategies (e.g. by commutative law, working out near multiples and adjusting, using doubling etc.) Strategies to support this are repeated addition using a number line, bead bars and arrays:		

Key Vocabulary: groups of, lots of, times, array, altogether, multiply, count, multiplied by, repeated addition, array, column, row, commutative, groups of, sets of, lots of, equal groups, times, multiply, times as big as, once, twice, three times... partition, grid method, total, multiple, product, sets of, share, share equally, one each, two each..., group, equal groups of, divide, divided by, divided into, division, grouping, number line, left, left over, inverse, short division, "carry", remainder, multiple, **inverse**, **divisible by**, **factor**

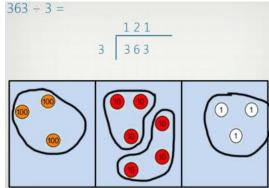
Objectives	Representations			Problem Solving		
Recall/ Mental Count in multiples of 6, 7, 9, 25 and 1 000 (copied from	Multiplication Continue to develop the grid method for multiplication of TU X U and HTU x U (Use Place Value Counters for arrays if needed – see Y3) Eg. 136 x 5 = 680 Encourage children to use a column to add correctly					solve problems involving multiplying and adding, including using the distributive law to
Number and Place Value)	X	100	30	6	E00	multiply two digit numbers by one
Recall multiplication	5	500	150	30	500 150	digit, integer scaling problems
and division facts or multiplication ables up to 12 × 12	division facts hultiplication + 30				and harder correspondence problems such as n	
Use place value, known and derived facts to multiple and			ith the grid meth	nod, introduce sl	hort multiplication.	objects are connected to m objects
acts to multiply and ivide mentally, neluding: nultiplying by 0 and ; dividing by 1; nultiplying together nree numbers	This enab method o format, bu	expanded short bles the child to f recording in a ut showing the w links between th od.	represent the column vorking.		Step 2 – short multiplication. Only when children are confident and accurate multiplying 2 and 3-digit numbers by a single digit using expanded short multiplication, and are already confident in "carrying" for written addition, should they be moved onto this method.	
Recognise and use actor pairs and commutativity in nental calculations appears also in Properties of Numbers)	Eg 38 × 7 38 <u>X 7</u> 56 <u>210</u> 266	= 266		I	Eg 327 × 4 = 1308 3 2 7 × 4 1 3 0 8 1 2	

Written Multiply two-digit

and three-digit

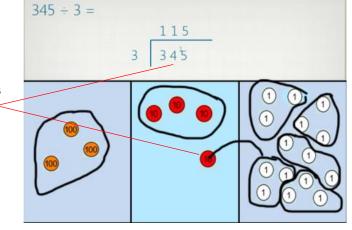
numbers by a onedigit number using

formal written layout


Division

Continue to develop short division. (see Year 3 for individual steps)

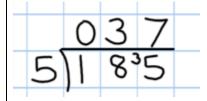
Pupils must be secure with the process of short division for dividing 2-digit numbers by a single digit (**those that do not result in a final remainder** —see steps in Y3), but must understand how to calculate remainders, using this to "carry" remainders within the calculation process.


Pupils move onto dividing numbers with up to **3-digits** by a single digit, however problems and calculations provided should **not** result in a final answer with remainder at this stage.

Example without remainders within calculation: 363

Example with remainders within calculation:

Remember to 'exchange' a ten for ten ones and show this in written algorithm as 'carrying' to the next digit as a remainder.

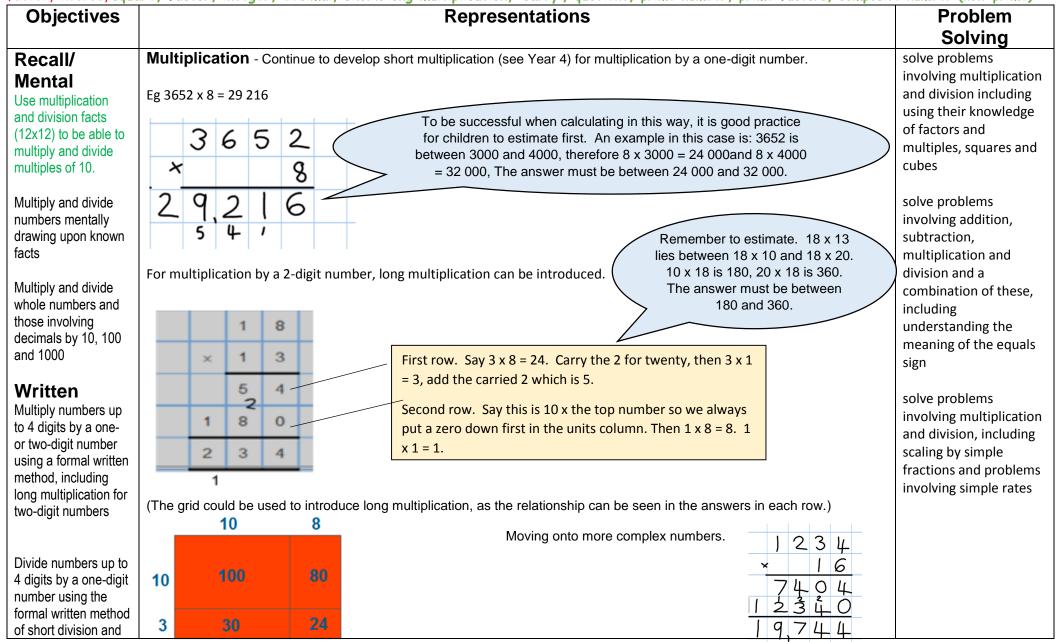


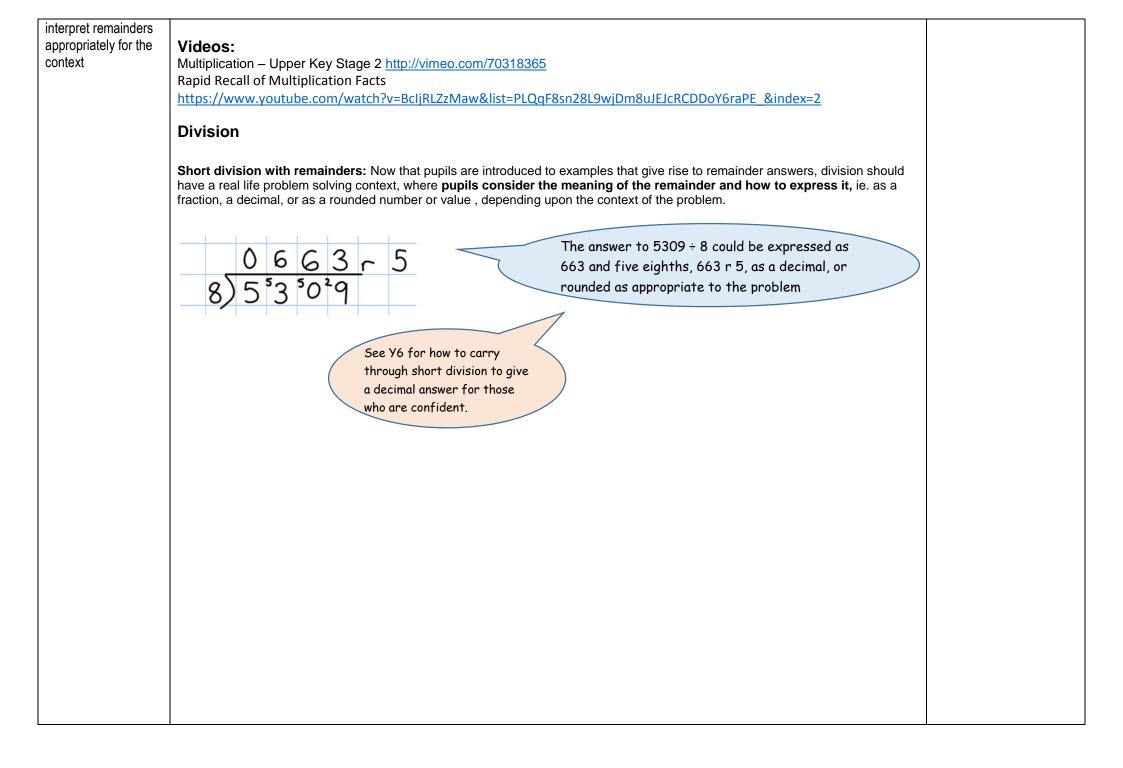
To record division calculations using formal written method with

remainders

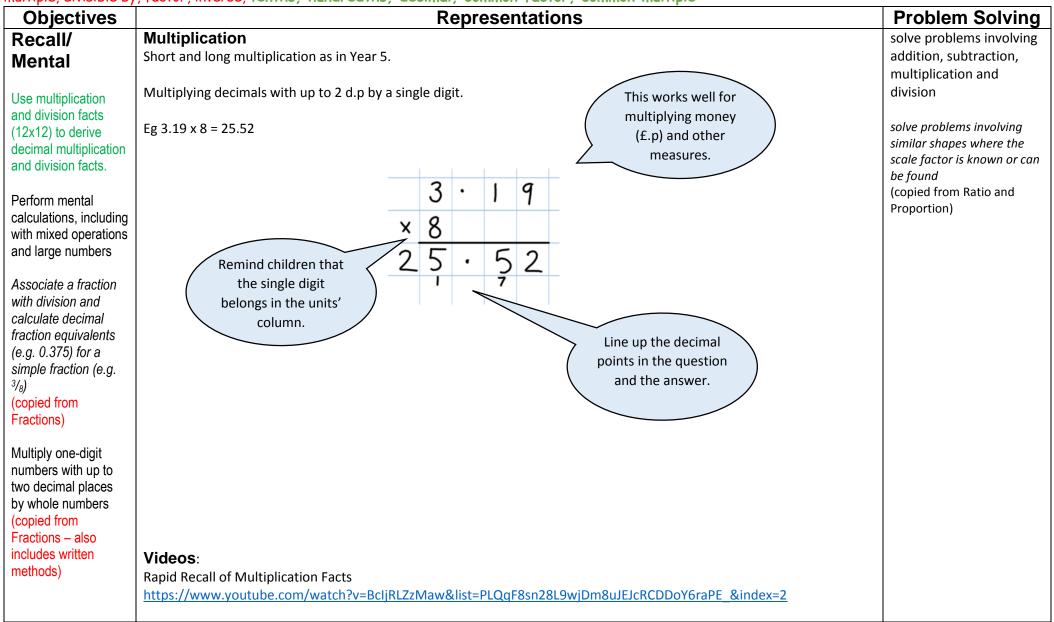
 $(HTO \div O)$

When the answer for the **first column** is zero $(1 \div 5)$, as in example), children could initially write a zero above to acknowledge its place, and must always "carry" the number (1) over to the next digit as a remainder.


Videos:


Multiplication – Lower Key Stage 2 (links to place value counters as shown in Y3) <u>http://vimeo.com/70319240</u>

Representing division with place value counters http://vimeo.com/83485661


Using place value counters and recording division http://vimeo.com/83485662

Key Vocabulary: groups of, lots of, times, array, altogether, multiply, count, multiplied by, repeated addition, column, row, commutative, sets of, equal groups, _times as big as, once, twice, three times..., partition, grid method, total, multiple, product, inverse, share, share equally, one each, two each..., group, equal groups of, divide, divided by, divided into, division, grouping, number line, left, left over, inverse, short division, "carry", remainder, multiple, divisible by, factor, inverse, square, factor, integer, decimal, short/long multiplication, 'carry', quotient, prime number, prime factors, composite number (non-prime)

Key Vocabulary: groups of, lots of, times, array, altogether, multiply, count, multiplied by, repeated addition, array, column, row, commutative, sets of, equal groups, times as big as, once, twice, three times... partition, grid method, total, multiple, product, inverse, square, factor, integer, decimal, short / long multiplication, "carry", equal groups of, divide, divided by, divided into, division, grouping, number line, left, left over, inverse, short division, "carry", remainder, multiple, divisible by, factor, inverse, tenths, hundredths, decimal, common factor, common multiple

Written

Multiply multi-digit numbers up to 4 digits by a two-digit whole number using the formal written method of long multiplication

Divide numbers up to 4-digits by a two-digit whole number using the formal written method of short division where appropriate for the context divide numbers up to 4 digits by a two-digit whole number using the formal written method of long division, and interpret remainders as whole number remainders. fractions, or by rounding, as appropriate for the context

Use written division methods in cases where the answer has up to two decimal places (copied from Fractions (including decimals))

Division
Short Division:
0812.125 8)6497.0040 Add a decimal point after the units if there is still a remainder.
Short division with remainders: Pupils should continue to use this method, but with numbers to at least 4 digits, and understand how to express remainders as fractions, decimals, whole number remainders, or rounded numbers. Real life problem solving contexts need to be the starting point, where pupils have to consider the most appropriate way to express the remainder.

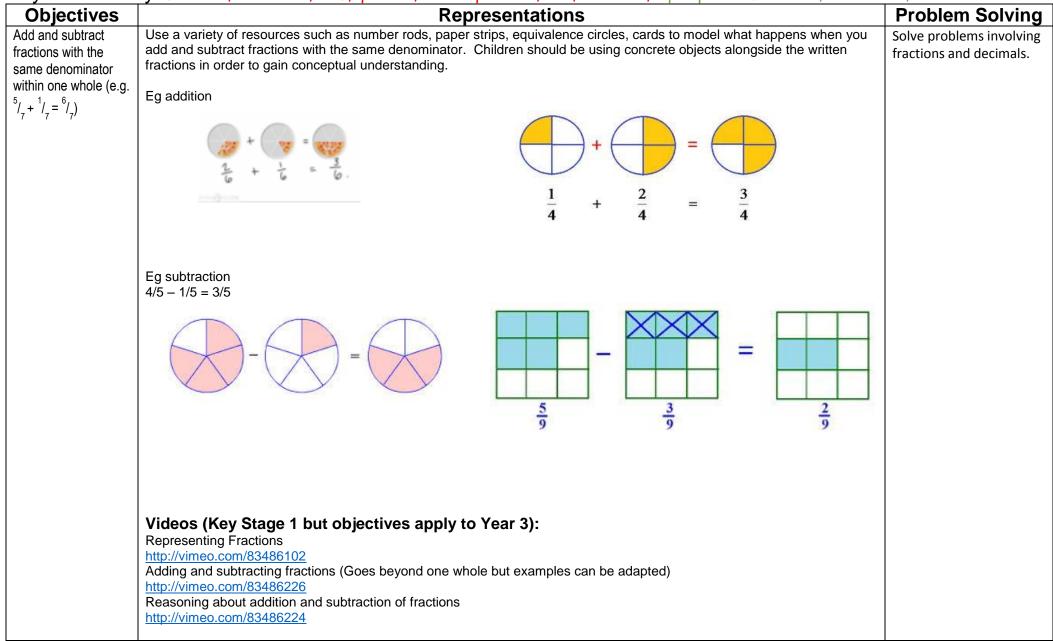
Calculating a decimal remainder: In this example, rather than expressing the remainder as r 1, a decimal point is added after the units because there is still a remainder, and the one remainder is carried onto zeros after the decimal point (to show there was no decimal value in the original number). Keep dividing to an appropriate degree of accuracy for the problem being solved.

Long Division

Long Division by chunking for dividing by 2 digits:

	36 x 10 = 360	
Introduce chunking.	36 x 20 = 720	
Eg: 648 ÷ 36 Step 1: estimate: 10 - 20	648 is between 360 and 720 so the	
	estimate is between 10 and 20.	

(Estimating will help children to reduce the number of subtractions being made.)


18		list:
3616348		1×36=36
-360 (10×36)	10×36=360
288		5×36=180
- 180 (<u>5</u> ×36)	
X'08		
- 72	(2×36)	
- 360	(<u>1</u> ×36)	

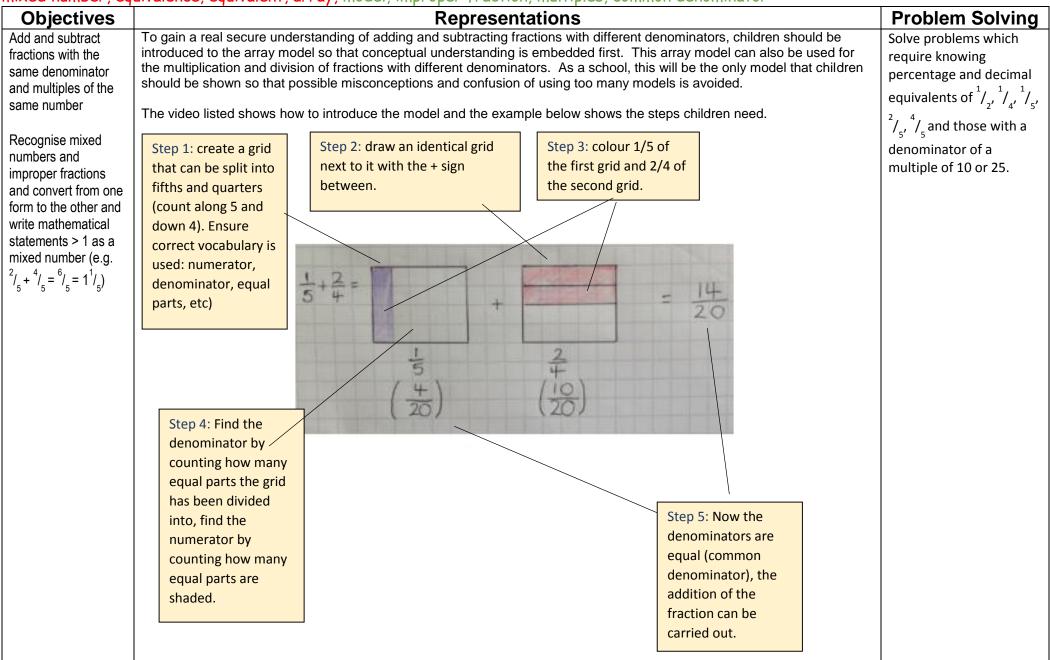
Step 2: Create a 'useful' list to help with subtractions. In this example we know the answer lies between 10 and 20 so there is no need to go up to 20 x 36. If we know 10 x 36 then we know 5 x 36 is half of this amount. Step 3: Begin taking chunks of 36 away. Use useful list to help. Write in brackets how many 'lots' are being subtracted (always put the number of lots first then the number being multiplied).

Step 4: Count up how many 'lots' or 'chunks' of 36 have been subtracted. Write the answer above the division box. Where remainders occur, pupils should express them as fractions, decimals or use rounding, depending upon the problem.

Calculation of Fractions – Year 3

Key Vocabulary: fraction, one whole, half, quarter, three-quarters, add, subtract, equal parts of a whole, numerator, denominator

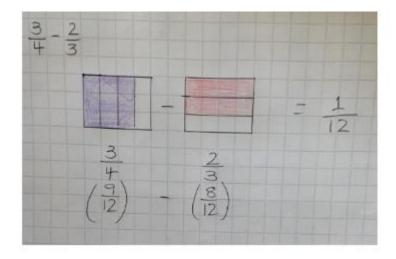
Calculation of Fractions – Year 4

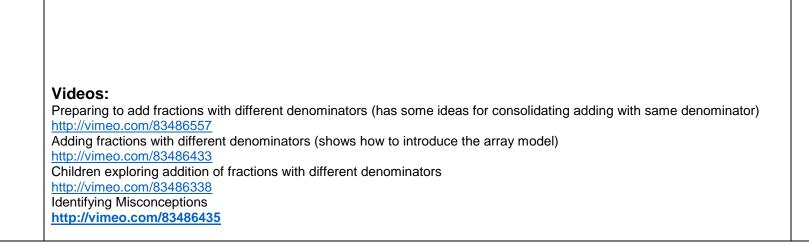

Key Vocabulary: fraction, whole-one/s, half, quarter, three-quarters, numerator, denominator, add, subtract, equal parts of a whole,

mixed number, equivalence, equivalent

Objectives	Representations	Problem Solving
Add and subtract	Continue to develop addition and subtraction of fractions as shown in Year 3 but beyond the whole one, using lots of	solve problems involving
fractions with the same denominator	practical resources such as number rods, equivalence circles, cards, etc to ensure conceptual understanding.	increasingly harder
	Eg	fractions to calculate
		quantities, and fractions
	$1 \frac{1}{2} + 1 \frac{1}{2} = 1 \frac{1}{1}$	to divide quantities,
		including non-unit
		fractions where the
		answer is a whole
		number
		solve simple measure
	$1\frac{1}{2} + 1\frac{1}{2} = 2\frac{2}{2}$ (most children should recognise	and money problems
	 - 2 equivalence that 2 halves are the 	involving fractions and
	same as one whole, therefore the answer is 3)	decimals to two decimal
	unswer is 57	places.
	Eg subtraction	
	$2\frac{2}{3} - 1\frac{1}{3} = 1$	
	Videos (Key Stage 1 but objectives apply to Year 3):	
	Representing Fractions	
	http://vimeo.com/83486102 Adding and subtracting fractions (Goes beyond one whole but examples can be adapted)	
	http://vimeo.com/83486226	
	Reasoning about addition and subtraction of fractions	
	http://vimeo.com/83486224	
	Key Stage 2 (Year 4) Developing Fluency – Counting in fractional steps	
	http://vimeo.com/83486434	
	Preparing to add fractions with different denominators (has some ideas for consolidating adding with same denominator)	
	http://vimeo.com/83486557	

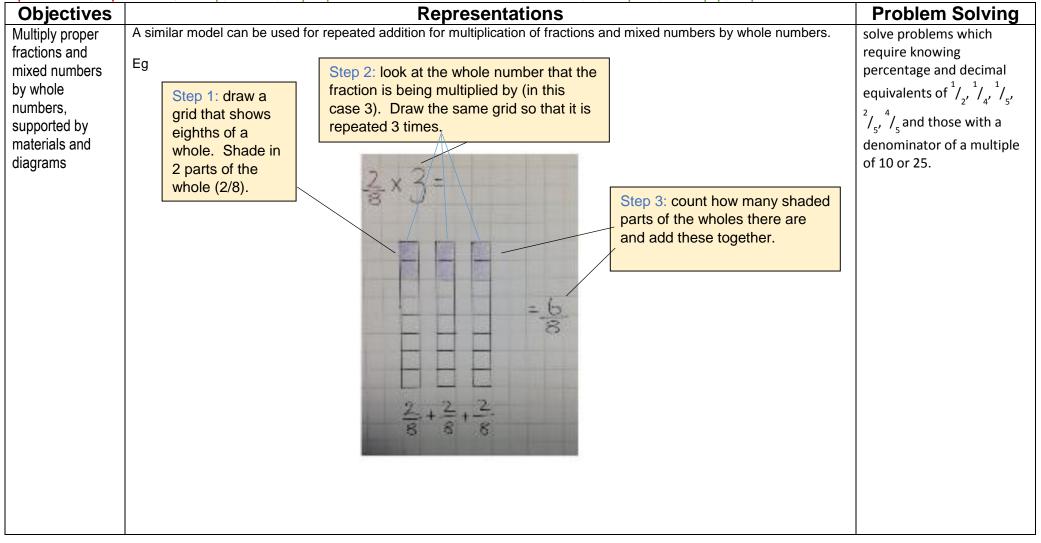
Calculation of Fractions (addition and subtraction) Year 5


Key Vocabulary: fraction, whole-one/s, half, quarter, three-quarters, numerator, denominator, add, subtract, equal parts of a whole, mixed number, equivalence, equivalent, array, model, improper fraction, multiples, common denominator

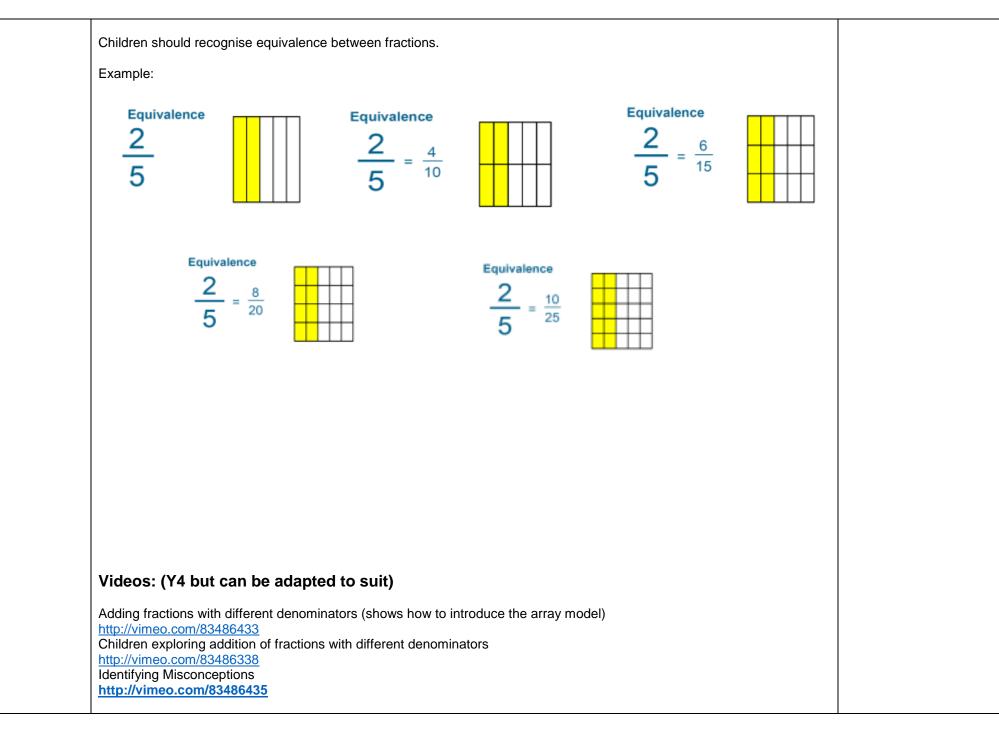


Subtraction:

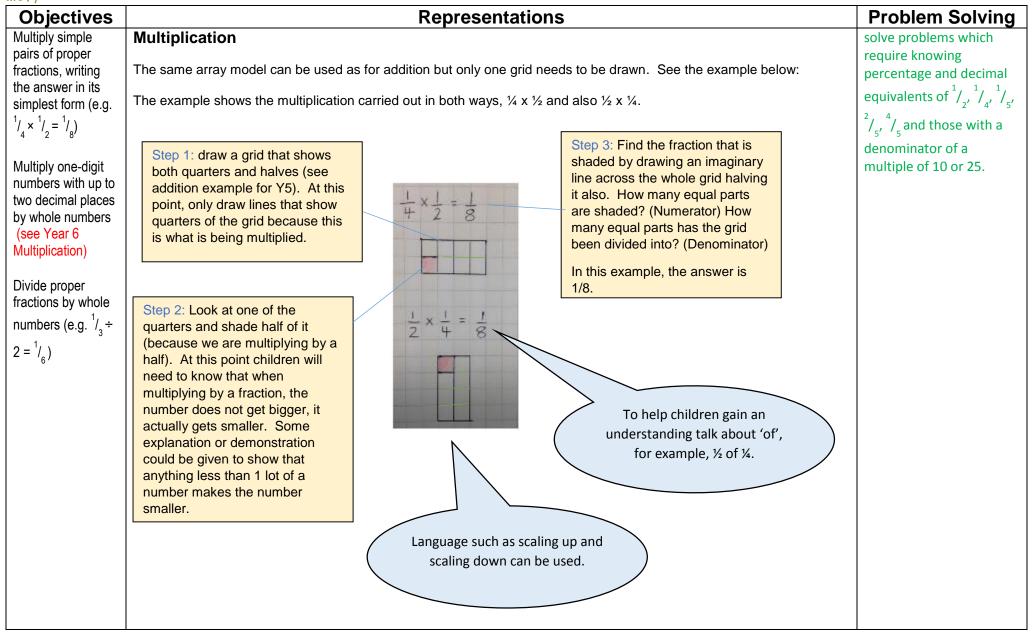
Follow steps 1 - 4 from addition. Step 5 is a subtraction calculation.


Example:

Calculation of Fractions (multiplication and division) – Year 5

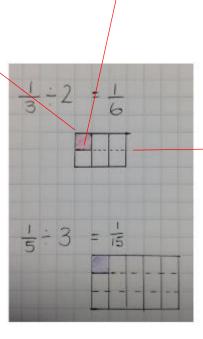

Key Vocabulary: fraction, whole-one/s, half, quarter, three-quarters, numerator, denominator, equal parts of a whole, mixed number, equivalence, equivalent, array, model, improper fraction, common denominator, multiples, multiply, repeated addition

Calculation of Fractions (addition and subtraction) Year 6


Key Vocabulary: fraction, whole-one/s, half, quarter, three-quarters, numerator, denominator, add, subtract, equal parts of a whole, mixed number, equivalence, equivalent, array, model, improper fraction, multiples, common denominator

Objectives	Representations	Problem Solving
Add and subtract	Continue to use the array model taught in Year 5 to add fractions with different denominators. Introduce addition of mixed number fractions using the same array model.	solve problems which
fractions with different denominators and		require knowing percentage and decimal
mixed numbers,	Examples:	equivalents of $\frac{1}{2}, \frac{1}{4}, \frac{1}{5}$
using the concept of equivalent	addition (see Y5 steps)	
fractions	13+24 Start Start	$\frac{2}{5}$, $\frac{4}{5}$ and those with a
	22	denominator of a multiple of 10 or 25.
	+ = 315	
	$=4\frac{7}{15}$	
	As children develop a conceptual	
	understanding using the model, they	
	may see the relationship between the model and how the common	
	Subtraction denominator can be calculated. This	
	will also help the children establish	
	the link between multiplication and	
	division, and fractions.	
	$= \frac{11}{21}$	
	13 - 14	
	$(\frac{14}{21}) - (\frac{3}{21})$	

Calculation of Fractions (multiplication and division) – Year 6


Key Vocabulary: fraction, whole-one/s, half, quarter, three-quarters, numerator, denominator, equal parts of a whole, mixed number, equivalence, equivalent, array, model, improper fraction, common denominator, multiples, multiply, divide, divisor, dividend, scale up/down, ...of.

Division

Again, use a model very similar to multiplication. Example:

Step 1: draw a grid that shows the dividend (1/3 in this case) and also the divisor (2 in this case). Draw lines down to show the dividend (1/3) but do not draw lines across to show the divisor at this point. Step 2: look at one of the thirds and divide it by 2 (the divisor). Shade in one part of this.

Step 3: To find the answer, look at the fraction that is shaded by drawing an imaginary line across the whole grid, dividing it by 2. How many equal parts are shaded? (Numerator) How many equal parts has the grid been divided into? (Denominator). In this case the answer is 1/6

Some children will begin to understand how the fractions are calculated without the need of the model. These children will develop a deeper understanding of the relationship between multiplication, division and fractions.